
www.manaraa.com

Journal of Information Technology Education Volume 8, 2009

Editor: Keith Willoughby

A Constructivist Approach to
Teaching Web Development

in Post-Secondary Vocational Settings

John M. Bunch
The SAJES Group, Inc., Tampa, Florida, USA

jmbunch@sajes.com

Executive Summary
Vocational education by its nature has a need for delivery methods that place a strong focus on
the relationship between school and work and seeks to deliver instruction in a manner that bridges
the two as seamlessly as possible. This paper presents a curriculum and constructivist-based in-
structional delivery approach, designed to emphasize a strong school-work relationship, for a
four-year degree in Web Development developed for a vocational training institution. The in-
structional outcomes for such a program are distinctly different from traditional software engi-
neering and other computer -specific programs and require a different approach to curriculum
development and instructional delivery, which focuses on the unique needs of vocational stu-
dents. At the same time, such programs should strive to emulate the best practices, educational
values, and, to the extent possible, the curriculum of traditional programs. The educational pro-
gram presented here employs a spiral sequencing of course material, presented using the con-
structivist approach of goal-based scenarios, in order to emphasize the applied, skill-building na-
ture of vocational instruction. Many authors have discussed the benefits of a constructivist ap-
proach to vocational education (i.e. Brown, 1998), while others have called for its increased use
in computer science related education (i.e. Connolly & Begg, 2006).

The current program adheres as closely as possible, given its vocational mission, to the latest rec-
ommendations and guidelines concerning four-year degree programs in software engineering
from the ACM/IEEE Joint Task Force on Computing Curricula.

Keywords: Problem-based learning, constructivism, career and technical education, post-
secondary education, Web development

Introduction
This paper presents a curriculum and
instructional delivery approach devel-
oped for a “bachelors” program in Web
application development at a post-
secondary career education / technical
training school. While a technical sub-
ject to be sure, Web Development brings
together skills sets from a variety of
business, computer science, and art re-
lated disciplines to produce (as noted by

Material published as part of this publication, either on-line or
in print, is copyrighted by the Informing Science Institute.
Permission to make digital or paper copy of part or all of these
works for personal or classroom use is granted without fee
provided that the copies are not made or distributed for profit
or commercial advantage AND that copies 1) bear this notice
in full and 2) give the full citation on the first page. It is per-
missible to abstract these works so long as credit is given. To
copy in all other cases or to republish or to post on a server or
to redistribute to lists requires specific permission and payment
of a fee. Contact Publisher@InformingScience.org to request
redistribution permission.

mailto:jmbunch@sajes.com�
mailto:Publisher@InformingScience.org�

www.manaraa.com

Constructivist Approach to Teaching Web Development

258

Deshpande & Hansen, 2001) a “discipline among disciplines” with its own unique goal (i.e. to
produce Web applications), synthesized knowledge base, and emerging standards and practices.

As a new field, it lacks universally implemented post-secondary curricula with the specific goal
of producing professional Web developers or engineers. Currently, Web professionals typically
have formal post-secondary training in one related discipline, such as network engineering, data-
base design, or multimedia design. As noted by Whitehead (2002), the primary skills of a Web
professional are an integration of several disciplines, and the demand is growing for educational
programs focused on delivering a holistic curriculum specific to that integration.

To that end, the current program seeks to create a coherent curriculum for Web application devel-
opers and, at the same time, a delivery strategy focused on the needs of post-secondary ca-
reer/technical education (CTE) students. The first part of this paper outlines the process of defin-
ing the current curriculum within the context of existing college-level curricula in related fields.
The second part discusses the constructivist approach developed to implement it with post-
secondary CTE students.

Locating Web Development within the Joint Task Force
Computing Disciplines
Program learning objectives and the corresponding specific curriculum areas were set by an advi-
sory board of industry professionals and area employers in cooperation with faculty (all of whom
had professional experience as Web developers). Four general curriculum content areas were
identified, corresponding to the typical tier-based architectural conceptualization of Web applica-
tions (user interface, business logic, and data services), along with global areas applying to all
tiers (e.g., project management, understanding business goals, computer networking, professional
practice, and ethics). ASP.Net using Visual Basic.Net was selected as the business logic pro-
gramming environment.

The bachelor's curriculum presented here follows an associate's program in graphic design that
includes an introduction to bitmapped graphics and Web page creation using graphical tools such
as Macromedia's Dreamweaver, but provides no instruction whatsoever in programming or script-
ing or the other topics presented in the bachelor's program. Also, it requires no math or science
prerequisites. In addition to liberal arts courses, the bachelor's program consists of eight four-
credit hour courses and one internship, all taken over six quarters.

While the setting of overall program learning objectives for the curriculum presented here was
accomplished by a fairly straightforward process, it was important to situate these objectives
within an overall context of computing knowledge. In other words, it was not our goal to define a
Web Development curriculum orthogonal to a traditional curriculum in computer science, infor-
mation systems, and other computer-related programs. Rather, it was to understand where the
current curriculum fit within the context of those programs and to integrate the best practices and
historical lessons of educational programs in those areas wherever possible.

The Computing Curricula 2005: The Overview Report (ACM/IEEE, 2006) discusses five compu-
ting disciplines for which specific curriculum guidelines and recommendations have been pub-
lished: Computer Engineering, Computer Science, Software Engineering, Information Systems,
and Information Technology. These five emerged during the 1990's from the more well-defined
fields of Electrical Engineering, Computer Science, and Information Systems as new develop-
ments and increasingly broad use of computational devices grew. While there is certainly overlap
with each of the five areas and some version of a Web Development curriculum could reasonably
be generated from within any of them, each with its own emphasis, the learning objectives for the
curriculum presented here locate Web Development within the discipline of Software Engineer-

www.manaraa.com

Bunch

259

ing. It is not the aim of this paper to define the subject matter content for a universally acceptable
curriculum for “Web Development,” but rather to discuss the implementation of one specific ex-
ample.

Both Web Development, as we have defined it within this curriculum, and Software Engineering,
as defined by ACM/IEEE, share the description of “...developing and maintaining software sys-
tems that behave reliably and efficiently, are affordable to develop and maintain, and satisfy all
the requirements that customers have defined for them (ACM/IEEE, 2006, p. 15).” In contrast,
Computer Engineering balances an emphasis on software with an emphasis on hardware. Com-
puter Science places an emphasis on greater theoretical breadth. Information Systems address the
solution of a broad scope of organizational information needs using a wide range of computer
technology, and the newer discipline of Information Technology is a complement to Information
Systems, in that “the emphasis is on the technology itself more than on the information it con-
veys” (ACM/IEEE, 2006, p. 14).

Also, when considering expectations of program graduates, Software Engineering is unique
among the five areas in that its focus is strictly on competencies in software development, as op-
posed to organizational computing infrastructure (Information Technology), designing systems to
meet general organizational and business goals (Information Systems), competency with theoreti-
cal work (Computer Science), and the integration of hardware and software (Computer Engineer-
ing).

While the subject matter of the current curriculum is discussed in greater detail elsewhere in this
paper, Table 1 presents the deviations of the comparative weights of the knowledge areas of the
current program from the minimum and maximum weights of those of the five kinds of degree
programs as defined in ACM/IEEE (2006). To obtain the deviation scores, the comparative
weight of each knowledge area of the current program was subtracted from the minimum and
maximum weights for each knowledge area across the five kinds of degree programs (from Table
3.1, ACM/IEEE, 2006). As with ACM/IEEE (2006), comparative weights are assigned as a rat-
ing, from zero to five, representing the relative emphasis on each knowledge area.

The number of individual knowledge areas in which the comparative weight of that knowledge
area within the current program was congruent with (equal to or greater than the minimum, and
equal to or less than the maximum) the same knowledge area within each of the five types of de-
gree programs were tallied. Of the 40 knowledge areas, the current program was congruent with
the comparative weights of 32 within Software Engineering degree programs, 17 within Informa-
tion Technology, 23 within Information Systems, 23 within Computer Science, and 19 within
Computer Engineering. Thus, Software Engineering, with its greater emphasis on assessing cus-
tomer needs and developing “...usable software that meets those needs (ACM/IEEE, 2006, p.
15),” is the parent discipline most closely encompassing the learning objectives and career goals
defined for the Web Development program presented here.

The Web Development curriculum goals defined here are clearly much narrower in scope than
those defined for software engineering within ACM/IEEE (2004), thus the program presented
here is perhaps best thought of as a sub-area or specialty within software engineering that does
not seek to impart the breadth of related domain knowledge. The priority is on the acquisition of
applied skill rather than breadth of conceptual knowledge, although as much effort toward the
latter is made as can be accommodated while maintaining a focus on the former.

www.manaraa.com

Constructivist Approach to Teaching Web Development

260

Table 1. Deviations* of comparative weight of computing topics
across the five kinds of degree programs with the current Web Development curriculum

*Deviation scores were derived by subtracting the topic area weight of the current program from the minimum and
maximum topic area weights for each of the five kinds of degree programs listed in Table 3.1 of ACM/IEEE (2006).

Traditional Academic Approaches to Teaching Software
Engineering
Generally speaking, computer science curricula are delivered using a topical sequencing ap-
proach. As indicated by Reigeluth (1999), in topical sequencing a specific topic is taught to the
required depth of understanding before moving on to the next. The ACM/IEEE (2004) presents
this form of sequencing in its model curricula, and the teaching of programming (see Robins,
Rountree, and Rountree, 2003 for a review) and database design (Connolly & Begg, 2006) are
traditionally approached from this perspective.

Common prescriptions for computer programming curricula support this framework. The
ACM/IEEE's recommended software engineering curriculum is organized into specific Software
Engineering Education Knowledge (SEEK) areas. ACM/IEEE (2004) lists nineteen guidelines
for the design and delivery of curricula intended to teach the SEEKs. Some of them, while cer-
tainly critical, are not particularly salient in the context of this discussion (such as that courses
and curricula should be regularly reviewed and updated). Other guidelines, however, bear directly
on the nature of the curriculum and the teaching process. These can be summarized as follows:

• Curriculum designers and instructors should be focused on outcomes or learning objec-
tives.

• A software engineering mindset be developed through recurring themes in the curricu-
lum.

• Students should be instilled with the ability and eagerness to learn.

Deviation Scores

Knowledge Area CE CS IS IT SE
(weight) min max min max min max min max min max

Programming Fundamentals 5 1 1 1 0 3 1 3 1 0 0
Integrative Programming 2 2 0 1 -1 0 -2 -1 -3 1 -1
Algorithms and Complexity 3 1 -1 -1 -2 2 1 2 1 0 -1
Computer Architecture and Organization 2 -3 -3 0 -2 1 0 1 0 0 -2
Operating Systems Principles & Design 2 0 -3 -1 -3 1 1 1 0 -1 -2
Operating Systems Configuration & Use 2 0 -1 0 -2 0 -1 -1 -3 0 -2
Net Centric Principles and Design 3 2 0 1 -1 2 0 0 -1 1 -1
Net Centric Use and configuration 3 2 1 1 0 1 -1 -1 -2 1 0
Platform technologies 2 2 1 2 0 1 -1 0 -2 2 -1
Theory of Programming Languages 1 0 -1 -2 -4 1 0 1 0 -1 -3
Human-Computer Interaction 4 2 -1 2 0 2 -1 0 -1 1 -1
Graphics and Visualization 4 3 1 3 -1 3 3 4 3 3 1
Intelligent Systems (AI) 0 -1 -3 -2 -5 -1 -1 0 0 0 0
Information Management (DB) Theory 2 1 -1 0 -3 1 -1 1 1 0 -3
Information Management (DB) Practice 4 3 2 3 0 0 -1 1 0 3 0
Scientific computing (Numerical mthds) 0 0 -2 0 -5 0 0 0 0 0 0
Legal / Professional / Ethics / Society 3 1 -2 1 -1 1 -2 1 -1 1 -2
Information Systems Development 2 2 0 2 0 -3 -3 1 -1 0 -2
Analysis of Business Requirements 5 5 4 5 4 0 0 4 3 4 2
E-business 4 4 4 4 4 0 -1 3 2 4 1
Analysis of Technical Requirements 5 3 0 3 1 3 1 2 0 2 0
Engineering Foundations for SW 1 0 -1 0 -1 0 0 1 1 -1 -4
Engineering Economics for SW 2 1 -1 2 1 1 0 2 1 0 -1
Software Modeling and Analysis 4 3 1 2 1 1 1 3 1 0 -1
Software Design 5 3 1 2 0 4 2 4 3 0 0
Software Verification and Validation 4 3 1 3 2 3 2 3 2 0 -1
Software Evolution (maintenance) 4 3 1 3 3 3 2 3 2 2 0
Software Process 4 3 3 3 2 3 2 3 3 2 -1
Software Quality 4 3 2 3 2 3 2 3 2 2 0
Comp Systems Engineering 2 -3 -3 1 0 2 2 2 2 0 -1
Digital logic 0 -5 -5 -2 -3 -1 -1 -1 -1 0 -3
Embedded Systems 0 -2 -5 0 -3 0 0 0 -1 0 -4
Distributed Systems 4 1 -1 3 1 2 0 3 1 2 0
Security: issues and principles 3 1 0 2 -1 1 0 2 0 2 0
Security: implementation and mgt 3 2 1 2 0 2 0 0 -2 2 0
Systems administration 1 0 -1 0 0 0 -2 -2 -4 0 -1
Management of Info Systems Org. 0 0 0 0 0 -3 -5 0 0 0 0
Systems integration 1 0 -3 0 -1 0 -3 -3 -4 0 -3
Digital media development 3 3 1 3 2 2 1 0 -2 3 2

Current
Program

www.manaraa.com

Bunch

261

• Software engineering should be taught as a problem-solving discipline.

• Underlying principles should be taught rather than the details of specific tools, although
appropriate and up-to-date tools should be used.

• The curriculum should have a significant real-world basis and should incorporate
project-based classes, practical exercises, and work experience.

• Concrete and convincing examples should be used to motivate students.

• A variety of teaching and learning approaches should be used.

• Important efficiencies and synergies can be achieved by designing curricula so that sev-
eral types of knowledge are learned at the same time.

ACM/IEEE (2004) also includes an example course sequence which suggests how the SEEKs can
be divided into courses then sequenced to produce the prototypical four-year degree program,
some close facsimile of which is found at the majority of colleges and universities around the
world. This curriculum is characterized by grouping the SEEKs into more or less discrete courses
and ordering the courses into parallel linear sequences as appropriate, such as Programming Fun-
damentals --> The Object-Oriented Paradigm --> Software Construction --> Software Design and
Architecture, etc., and culminating in a project-based capstone course designed to pull all of the
SEEKS together and integrate them into a whole.

The guidelines for a two-year degree program in Computer Science follow a similar pattern
(ACM/IEEE 2002). In this case, for example, the Programming Fundamentals course is followed
by The Object-Oriented Paradigm, which is followed by Data Structures and Algorithms in the
third semester. Four or five elective courses (such as Web-Centric Computing), about half of
which have no prerequisites, complete the degree program. As with the four-year program, the
two year program is designed for students who wish to enter the workforce upon degree comple-
tion or enter a higher-level degree program. As such, the goals of both the two-year and four-year
degree programs recommended by the Joint Task Force are by definition broader than the goals
of a vocational training degree program – the vocational training program is willing to sacrifice
breadth and depth of related subject matter knowledge for practical skill within a narrower area,
as the preparation for further formal education is beyond the scope of the program.

Understanding the Needs of Post-Secondary CTE Students
Brown (1998), in her review of the application of constructivist principles to vocational educa-
tion, identifies a specific advantage of the current approach for vocational training when she
states that “Vocational educators have long recognized the importance of connecting school to
work (p. 14).” Further, research suggests that students in career and technical education pro-
grams prefer hands-on, engaged learning experiences (Ausburn & Brown, 2006; Gentry, Peters,
& Mann, 2007; Stitt-Gohdes, 2001) and want to know that the skills they are being asked to learn
will directly benefit them in the job market (Gentry, Rizza, Peters, & Hu, 2005). Anecdotally at
least, this was by far the most commonly voiced opinion of the students currently enrolled at the
institution for which the current program was developed.

These students expect to leave the post-secondary educational program with ready-to-use job
skills, and the perception that they are acquiring those skills throughout their efforts in such pro-
grams works is an important motivational driver. However, for such programs to be effective
beyond the short term and prepare the student for programming endeavors beyond the relatively
brief nature of the immediate post-training context, the curriculum designer must seek to build the
schemas and mental models for post-training programming skill acquisition and expertise to de-
velop efficiently. As noted by Robins, Rountree, and Rountree (2003), a schema is the basic cog-

www.manaraa.com

Constructivist Approach to Teaching Web Development

262

nitive chunk or plan used in program design and understanding, and mental models are mental
representations of things such as problem domain or domains for which a program is to be writ-
ten, the machine on which a program will run, and the completed program itself.

In their review of the literature on learning and teaching computer programming, Robins, Rount-
ree, and Rountree (2003) propose a “programming framework” to be considered by educators
when designing programming course curricula. This framework identifies three components of
schema to be constructed within the mind of the student - knowledge, strategies, and models – for
three primary task areas or stages within program development – design, generation, and evalua-
tion. The knowledge component, for example, would involve planning and formal methods at the
design stage, language syntax and libraries at the generation stage, and debugging tools at the
evaluation stage. The ACM's SEEK areas can relatively easily be sorted into knowledge, strate-
gies, and model schema components.

Thus our goal was two-fold. First, to create a Web development curriculum that, while much
more narrow in scope than a traditional software engineering program, followed industry standard
curricula and educational guidelines to the maximum extent possible given the CTE context.
Second, to deliver that curriculum in a manner that would leverage the learning preferences and
expectations of this audience of learners, while being mindful of the cognitive processes (a la
Robbins et al., 2003) necessary to develop legitimate understanding and skill.

Instructional Method
As mentioned above, ACM/IEEE (2004) suggests a topical sequencing approach to instructional
delivery. The current program, however, implements spiral sequencing (Bruner, 1960; see also
Harden & Stamper, 1999), in which the learner masters a part of one topic before moving on to
the next and mastering part of it, then the next, etc., before coming back to the first topic and
mastering another part, and so on. Spiral content sequencing allows for the creation of a series of
increasingly complex Web development tasks, each one implementing an ever larger piece of
each application tier (i.e., user interface / business logic / data services). As noted by Collura,
Aliane, Daniels, and Nocito-Gobel (2004) in their discussion of the recent development of a spiral
approach to multidisciplinary engineering education at the University of New Haven, there is a
relative paucity of attempts at implementing a spiral model at the majority of schools of engineer-
ing.

However, DiBasio, Clark, Dixon, Comparini, and O'Connor (1999) report that a spiral curriculum
in chemical engineering boosted subject matter interest and communication skills, while Trumper
(1996) notes that such an approach to teach basic concepts of energy would avoid many of the
pitfalls inherent in modularized instruction and be more consistent with the contemporary pers-
pective of constructivist learning. Cornford (1997), in a review of the educational psychology
literature related to knowledge and skill acquisition in the context of vocational training, suggests
that a spiral curriculum approach is much more consistent with the psychological processes of
schema construction and mental model building than a traditional, modularized approach.

In the current program the spiral content sequence is delivered through the extensive use of goal-
based scenarios (GBS) (i.e., Schank, Berman, & MacPherson, 1999). Each course is composed of
a sequence of business scenarios which the student solves (usually) by developing a Web applica-
tion. These scenarios progress from the simple to the complex, each requiring a slightly wider
range and greater depth of knowledge and skill (sampled from each of the major topic areas) than
the previous. In this way the student can see explicit, positive progress toward career skills
throughout each individual course.

www.manaraa.com

Bunch

263

While such an approach is unusual within software engineering education, many educators have
called for wider implementation of it. As noted by Merrill (2002) in his synthesis of the past sev-
eral years of instructional design theories and models, the engagement of learners in real-world
problems promotes learning. Merrill defines a real-world problem as one in which the learning
activity represents a whole task, and the task is representative of problems the learner would en-
counter in the real world. As noted by Brown (1998), problem-based instruction reflects a con-
structivist approach to teaching. Brown's (1998) comprehensive report on the application of con-
structivist practice in vocational and career education finds that constructivism is consistent with
research findings on the neurological basis of cognition, seeks a high standard of intellectual
quality, and connotes a new paradigm in teaching.

Bennett, Grasel, Parchman, and Waddington (2005) note that an increasing trend within science
education is the desire by students to see instruction grounded within a real-world context, and
that such instruction provides enhanced motivation for learners. Connolly and Stansfield (2006)
note that information systems problems can be characterized by incomplete, contradictory, and
changing requirements, and solutions can be difficult to recognize because of these complex in-
terdependencies. Connolly and Stansfield (2006) further suggest that embedding learning activi-
ties in real-world problems can help overcome these issues. Connolly and Begg (2006) argue that
problem-based instruction can be particularly helpful in teaching the abstract concepts inherent in
database design, one of the application tiers Web developers must master. Connolly and Begg
(2006) describe the difficulties in effectively teaching design concepts in the traditional format
and suggest that the learning-by-doing model of problem-centered instruction is needed to effec-
tively impart these skills. Linder, Abbott, and Fromberger (2006) make a similar argument in the
arena of software design.

Cartelli, Stansfield, Connolly, Jimoyiannis, Magalhaes, and Maillet (2008) argue for constructiv-
ist, problem-based learning in online learning for information technology education, while Leitch
and Warren (2007) argue for problem-based learning to teach information systems in general in
Australian universities. Cheong (2007) reports on the successful use of problem-based learning to
teach an intelligent systems course and notes the importance of structure in a problem-based im-
plementation. Venebles and Tan (2007) successfully used a hands-on, problem-based approach to
teach genetic algorithms to undergraduates.

Thus, the research literature provides a reasonable expectation of its instructional efficacy for the
subject matter being taught. In addition, our instructional delivery method seems uniquely suited
to vocational education - instruction is firmly grounded in a real-world context using real-world
tasks, and the clear relationship between each instructional task and job skills is consistently (and
constantly) maintained.

As noted by van Merrienboer, Kirshner, and Kester (2003), a potential problem with problem-
based instructional approaches is that the learner becomes overwhelmed by task complexity,
causing a level of cognitive load that interferes with learning. As discussed by Tuovinen and
Sweller (1999), high cognitive load occurs when the many elements of instructional material
compete at once for cognitive resources – primarily those of working memory.

An instructional approach useful for creating appropriate levels of cognitive load is scaffolding –
presenting performance supports as needed to achieve a goal, then fading them away as the learn-
er is able to achieve the goal on his or her own (van Merrienboer et al., 2003). The current pro-
gram makes use of worked-out examples, in which cognitive load is reduced by having learners
complete small parts of worked-out examples, then progressively complete larger parts of addi-
tional worked-out examples until the target task is accomplished (Tuovinen & Sweller, 1999).

Many authors have noted positive results in the use of worked-out examples for the acquisition of
complex cognitive skills across a variety of domains (i.e. Hilbert, Renkl, Schworm, Kessler, &

www.manaraa.com

Constructivist Approach to Teaching Web Development

264

Reiss, 2008; Yaman, Nerdel, & Bayrhuber, 2008; see Pass & van Gog, 2006, for a review), and
note that the modularization of problem solutions into smaller solution elements itself works to
reduce cognitive load (Gerjets, Scheiter, and Catrambone, 2004).

By implementing a spiral curriculum using goal-based scenarios, the program presented here at-
tempts to follow the Joint Task Force Software Engineering curriculum design and delivery
guidelines, along with the Robins, Rountree, and Rountree’s (2003) framework for teaching com-
puter programming. It also attempts to include the SEEKs defined for undergraduate degree pro-
grams in software engineering (ACM/IEEE, 2004). Admittedly, however, the breadth of content
within the SEEKs is much narrower in the current program than would be typical of a traditional
software engineering degree program. The intention is to provide an example or suggestion for
other educators faced with a similar task – providing legitimate, quality instruction with the goal
of developing hands-on, applied, real-world knowledge and skills.

Curriculum Development and Content Sequencing
A three-semester track of tier practice courses, titled Introduction to Server Side Programming,
Intermediate Server-Side Programming, and Advanced Server-Side Programming, are taken dur-
ing quarters 1, 2, and 3. These courses are each composed of a series of goal-based scenarios de-
signed to require an ever increasing expertise at each level of the Web application tier.

For example, in a sample lesson from Introduction to Server Side Programming, students are giv-
en the following GBS:

You have been asked to develop a Web site for a children's baseball league. Along with a
description of the league, other marketing text, and pictures, the league would like to
have a “contact us” form that site visitors can use to submit their name and contact in-
formation. The league wants to be able to go to a special administration page and see a
list of all information collected.

A solution to this scenario is then demonstrated by the instructor, with knowledge and skills pre-
sented from each content area (thinking through and planning a solution, creating HTML docu-
ments, creating ASP.Net files to process HTML form data and retrieve data from the database,
creating a database table to store the data). Within each content area specific content items are
explained and demonstrated (HTML form tags, the Response.write method, ADO.Net connection
object, Datagrid control, SQL Insert statement, etc.).

Once the GBS has been thoroughly demonstrated by the instructor, the students are given the so-
lution as a worked-out example. Other materials and scaffolding techniques are used as appropri-
ate, generally at the determination of the instructor. Students are then given the following GBS to
complete independently:

You have been asked to develop a Web site for a local antique automobile collector's
club. In addition to general information about the club, pictures of antique automobiles,
etc., the club would like to have a page where antique automobile owners can register for
an upcoming auto show. The club wants to collect the registrant's name and contact in-
formation, along with the make and model of the automobile they will bring to the show.
Finally, the club wants another page that displays a list of everyone who has registered,
along with their name, contact information, and automobile make and model.

The next lesson includes a GBS with one additional feature or task, for example a requirement to
create two database tables and insert data into one or the other based on an input from the user.
The delivery continues in this manner until all specific content areas have been covered to the
specified depth. In this way a spiral is created through the content areas as the student progresses

www.manaraa.com

Bunch

265

through each successive GBS (see Figure 1). The tier practice courses are designed to progress
from one to the next while maintaining a consistent amount of material (albeit more complex)
from each content area.

Figure 1. Relative emphasis and distribution of content areas across the curriculum.

Accompanying each tier practice course is a specialty course in which the goal-based scenarios
and accompanying instruction tend to focus more heavily on a narrower set of content. The first
specialty course, Programming Concepts, places a greater emphasis on programming fundamen-
tals using VB.Net and Javascript, understanding the three-tier model, good programming practice,
and other basics. The next specialty course, Computer Networking, focuses on TCP/IP network-
ing and security, with goal-based scenarios building skills such as Web server configuration and
network troubleshooting. The third specialty course, Database Administration and Programming,
includes goal-based scenarios with an emphasis on the data services tier. Project Management
follows in the fourth quarter and includes goal-based scenarios requiring group work in which
requirements analysis and project planning, understanding business goals, professional practice
and ethics, and quality assurance feature prominently. A course entitled Special Topics in Web
Development follows in the fifth quarter and acts as a capstone course. In this course each student
defines his or her own hypothetical business need, proposes a solution, and then develops and
implements the solution. Finally, an internship follows in the last quarter in which the student
works as part of a Web development team within an external organization. Figure 2 shows the
relative emphasis on each content area as an approximate percentage of course content within
each course across the curriculum.

www.manaraa.com

Constructivist Approach to Teaching Web Development

266

Figure 2. Distribution of specific content areas across quarters and courses.

www.manaraa.com

Bunch

267

Assessment Issues
As Brown (1998) notes, the constructivist view of assessment is focused on measurement of
learning that has value beyond the classroom and meaning to the learner, provides a learning ex-
perience in its own right, and is guided by legitimate standards and criteria. As noted by many
authors (i.e., MacDonald & Savin-Baden, 2004; Norman, 1998), assessment tools for problem-
based learning are dependent on the specific combination of problem solving skills and content
knowledge required by the program. What we describe here is our general approach to assess-
ment in order to highlight the elements of our program where assessment is most salient and to
indicate that assessment is a consideration we've built into the program from the beginning. How-
ever, in this paper we do not consider the many possible methods of assessment discussed in the
literature (see MacDonald, 2005, for a review), and we will save a thorough discussion of our
assessment experiences and results in light of this literature for a later report.

Student Knowledge Assessment and Progression Readiness
It is important that knowledge assessment techniques maintain the instructional focus on applied
skill and real-world scenarios. Knowledge assessments have three important roles to play. First, it
is important to confirm that a student has mastered the required knowledge and skill necessary to
move to the next GBS. Second, it is important that the instructor identify deficits in a student's
knowledge in order to provide appropriate instructional support. Third, and perhaps most impor-
tantly, it is critical that rapid feedback on scenario solutions be given such that learners can index
the information in order to retrieve it later and use it. As described by Schank, Berman, and Mac-
Pherson (1999), indexing is a critical component of the development of expertise, in which infor-
mation and experience is organized in memory such that it can be found again and used when
needed.

Within a given course (class sizes limited to 20 or fewer students), two basic types of scenarios
were assigned on an alternating basis. First was the in-class scenario, completed in an open-lab
format in which the instructor would monitor the progress of each student and provide one-on-
one coaching as needed. This was purely a mastery-based exercise – the students were required to
submit a solution, but could not do so until it was successfully completed. Again, the intention
was to provide real-time feedback and coaching on the in-class scenario. Following the in-class
scenario was a take-home scenario that the student completed independently. The student was
provided detailed feedback on his or her solution prior to being given the next scenario assign-
ment. The take-home scenario was intended to be a more formal test of knowledge and skill ac-
quisition and was thus assigned a traditional numeric grade based on a rubric of the knowledge
and skills required to complete it. It was at the same time mastery-based, and the student was not
able to progress to the next scenario in the sequence unless mastery had been demonstrated on the
previous one. The scenario sequence within each course culminates with a criterion scenario, for
which a successful solution requires the student to demonstrate all of the learning objectives set
for the course.

Because of the mastery-based focus within courses, students were not able to progress to the next
course in sequence without successfully completing (and thus mastering the content of) the pre-
vious one.

Assessing Program Effectiveness
Among the most important functions of program assessment is to provide feedback for program
revision and improvement. From a Kirkpatrick perspective (i.e. Kirkpatrick & Kirkpatrick, 2006),
an evaluation of program effectiveness was designed as follows. First, learner reactions are as-

www.manaraa.com

Constructivist Approach to Teaching Web Development

268

sessed using a brief five-item, Likert-type scenario rating scale given at the end of each scenario
(e.g., The scenario was easy to understand, The scenario helped me learn about Web program-
ming), along with an open-ended item in which students are asked to make general comments
about the scenario. These results allow the instructor to make scenario and other course material
revisions where appropriate prior to their next use.

In operational terms, learning is assessed by posing the question Do graduates of this program
have the knowledge and skills identified as program learning objectives by the advisory board?
These learning objectives appear as formal requirements for the student project in the capstone
course Special Topics in Web Development, as well as the internship, and thus must be met in
order to complete the program. For each course, the criterion scenario encapsulates the learning
objectives for the course. Therefore the extent to which students complete courses becomes the
primary measure of learning. Also, within each course, the instructor evaluates learning of each
required content area using a checklist on each of the take-home scenarios. For each student, each
content area on which performance is not adequate is recorded. If a pattern emerges for one or
more content areas, the previous scenarios in which those areas are covered are reviewed and re-
vised as needed, whether in the current or a previous course.

From an institutional perspective it is difficult to observe changes in behavior resulting from the
training provided, in that clearly the goal is for the new behavior to be engaged in outside of the
institution in which it was presumably taught. The internship requirement is the one exception to
this. A faculty member is designated as the internship faculty supervisor and keeps in frequent,
regular, and structured contact with an internship site supervisor. The faculty supervisor main-
tains a checklist of behaviors the student should demonstrate at the internship site, and this infor-
mation provides important clues regarding the transfer of knowledge and skills learned in the
classroom to on-the-job performance.

Finally, the desired results and ultimate program goal is to produce workforce-ready graduates,
and the measure of this is job placement rates. Each graduate is surveyed at three, six, and twelve
months following graduation for his or her current job status. Job status is categorized in one of
the following ways: employed in field (a majority of job responsibilities fall within the scope of
program learning objectives), employed in related field (a minority of job responsibilities fall
within the scope of program learning objectives), employed out of field (program learning objec-
tives do not overlap with job requirements), or unemployed. Assuming that the reaction, learning,
and behavioral measures are tracking along, a poor job placement rate indicates a re-thinking of
learning objectives is necessary.

Closing Remarks
Our primary goal in this paper was to describe our innovations in the development of the current
program. It was important for us to situate the curriculum itself within a traditional computer
science framework, which we accomplished by carefully considering where the current program
overlaps the various areas of subject matter focus among standard curriculum models to identify
the best fit. We then sought to identify the best practices and instructional goals for the teaching
of software engineering and to identify and implement a delivery methodology that would en-
compass these goals while meeting the needs of our post-secondary, vocational audience of learn-
ers. We believe our program meets the strong school to work bond of vocational education
through the application of a spiral curriculum, combined with the constructivist approach of prob-
lem-based learning, to place every assignment in every course in a real-world context.

While the curriculum described in this approach is certainly too narrow for a traditional four-year
degree program in software engineering, the instructional methods and delivery used may none-
theless be useful in such programs. One can clearly imagine a much broader curriculum than that

www.manaraa.com

Bunch

269

presented here being delivered using similar techniques. Although it is beyond the scope of this
paper to present it in detail, there is a great deal of contemporary research and theory supporting
the use of this approach and providing guidance for its implementation. For example, much has
been written about the need to situate learning tasks within real-world contexts (e.g. Lave &
Wenger, 1991) the situational and environmental determinants of cognition (e.g. Allen, Otto, &
Hoffman, 2004), and the utility of goal-based scenarios and task sequencing to decrease cognitive
load (e.g. van Merrienboer et al., 2003), so we will leave it to these and other authors to provide a
richer theoretical rationale for the current approach.

Finally, while the degree to which the SEEKs could be thoroughly covered is limited, the current
program attempts to follow the ACM/IEEE Joint Task Force on Computing Curricula recommen-
dations as closely as possible and successfully does so in most areas. Further, the instructional
techniques used seek to follow sound educational practice in teaching programming skill by de-
veloping cognitive schemata in knowledge, strategies, and models.

The program presented here is specifically vocational in its approach and goals. Although this
statement is admittedly anecdotal, at the top of the list of students concerns most every instructor
in a vocational or “career education” program has heard is something along the lines of how is
this knowledge you're asking me to acquire going to further my career goals? The answer to this
question is explicit in every lesson and every assignment in the program presented here. As such,
it should provide a potential model for any instructional endeavor where vocational concerns are
paramount.

References
ACM/IEEE. (2002). Computing curricula 2003: Guidelines for associate-degree curricula in computer

science. (Joint Task Force on Computing Curricula). Retrieved May, 2007 from
http://www.acm.org/education/curricula-recommendations

ACM/IEEE. (2004). Computer engineering 2004: Curriculum guidelines for undergraduate degree pro-
grams in computer engineering. (Joint Task Force on Computing Curricula, Final Report). Retrieved
May, 2007 from http://www.acm.org/education/curricula-recommendations

ACM/IEEE. (2006). Computing curricula 2005: The overview report. (Joint Task Force on Computing
Curricula). Retrieved May, 2007 from http://www.acm.org/education/curricula-recommendations

Allen, B. S., Otto, R. G., & Hoffman, B. (2004). Media as lived environments: The ecological psychology
of educational technology. In D. H. Jonassen (Ed.), Handbook of research on educational communica-
tions and technology: A project of the Association for Educational Communications and Technology.
New Jersey: Erlbaum.

Ausburn, L. J., & Brown, D. (2006). Learning strategy patterns and instructional preferences of career and
technical education students. Journal of Industrial Teacher Education, 43(4), 6-39.

Bennett, J., Grasel, C., Parchman, I., & Waddington, D. (2005). Context-based and conventional ap-
proaches to teaching chemistry: Comparing teachers; views. International Journal of Science Educa-
tion, 27, 1521-1547.

Brown, B. L. (1998). Applying constructivism in vocational and career education (Report No.
RR93002001). Washington, DC: Office of Educational Research and Development. (ERIC Document
Reproduction Service No. IN 378).

Bruner, J. (1960). The process of education. Cambridge, MA: Harvard University Press.

Cartelli, A., Stansfield, M., Connolly, T., Jimoyiannis, A., Magalhaes, H., & Maillet, K. (2008). Towards
the development of a new model for best practice and knowledge construction in virtual campuses.
Journal of Information Technology Education, 7, 121-134. Retrieved from
http://jite.org/documents/Vol7/JITEv7p121-134Cartelli397.pdf

http://www.acm.org/education/curricula-recommendations�
http://www.acm.org/education/curricula-recommendations�
http://www.acm.org/education/curricula-recommendations�
http://jite.org/documents/Vol7/JITEv7p121-134Cartelli397.pdf�

www.manaraa.com

Constructivist Approach to Teaching Web Development

270

Cheong, F. (2007). Using a problem-based learning approach to teach an intelligent systems course. Pro-
ceedings of 2007 Computer Science and IT Education Conference, 141-153. Retrieved from
http://csited.org/2007/7CheoCSITEd.pdf

Collura, M. A., Aliane, B., Daniels, S., & Nocito-Gobel, J. (2004). Development of a multidisciplinary
engineering foundation spiral. Proceedings of the 2004 American Society for Engineering Education
Annual Conference and Exposition, Session 2630.

Connolly, T., & Begg, C. (2006). A constructivist-based approach to teaching database analysis and de-
sign. Journal of Information Systems Education, 17 (1), 43-53.

Connolly, T., & Stansfield, M. (2006). Using games-based elearning technologies in overcoming difficul-
ties in teaching information systems. Journal of Information Technology Education, 5, 459-476. Re-
trieved from http://jite.org/documents/Vol5/v5p459-476Connolly170.pdf

Cornford, I. (1997). Ensuring effective learning from modular courses: A cognitive psychology-skill learn-
ing perspective. Journal of Vocational Education and Training, 49(2), 237-251.

Deshpande, Y., & Hansen, S. (2001). Web engineering: Creating a discipline among disciplines. IEEE
Multimedia, 8(2), 82-87.

DiBasio, D., Clark, W., Dixon, A., Comparini, A. G., & O'Connor, L. (1999, November). Evaluation of a
spiral curriculum for engineering. Paper presented at 29th ASEE/IEEE Frontiers in Education Confe-
rence, San Juan, Puerto Rico.

Gentry, M., Peters, S., & Mann, R. (2007). Differences between general and talented students’ perceptions
of their career and technical education experiences compared to their traditional high school expe-
riences. Journal of Advanced Academics, 18(3), 372-401.

Gentry, M., Rizza, M., Peters, S., & Hu, S. (2005). Professionalism, sense of community, and reason to
learn: Lessons from an exemplary career and technical education center. Career and Technical Educa-
tion Research, 30(1), 47-85.

Gerjets, P., Scheiter, K., & Catrambone, R. (2004). Designing instructional examples to reduce intrinsic
cognitive load: Molar versus modular presentation of solution procedures. Instructional Science, 32,
33-58.

Harden, R. M. & Stamper, N. (1999). What is a spiral curriculum? Medical Teacher, 21 (2), 141-143.

Hilbert, T. S., Renkle, A., Schworm, S. Kessler, S., & Ress, K. (2008). Learning to teach with worked-out
examples: a computer-based learning environment for teachers. Journal of Computer Assisted Learn-
ing, 24, 316-332.

Leitch, S., & Warren, M. (2007). Using problem based learning to teach future Australian IS professionals.
Proceedings of the 2007 Computer Science and IT Education Conference, 417-424. Retrieved from
http://csited.org/2007/8LeitCSITEd.pdf

Linder, S., Abbott, D., & Fromberger, M. (2006). An instructional scaffolding approach to teaching soft-
ware design. Journal of Computing Sciences in Colleges, 21(6), 238-250.

Lave, J., & Wenger, E. (1991). Situated learning: Legitimate peripheral participation. Cambridge: Cam-
bridge University Press.

Kirkpatrick, D. L., & Kirkpatrick, J. D. (2006). Evaluating training programs: The four levels. San Fran-
cisco: Berrett-Koehler.

MacDonald, R. (2005). Assessment strategies for enquiry and problem-based learning. In Barrett, Lab-
hrainn, & Fallon (Eds.), Handbook of enquiry and problem-based learning: Irish case studies and in-
ternational perspectives. Centre for Excellence in Learning and Teaching: Dublin. Retrieved January
1, 2009 from http://www.aishe.org/readings/2005-2/contents.html

MacDonald, R.,& Savin-Baden, R. (2004). A briefing on assessment in problem-based learning. LTSN
Generic Centre Assessment Series. Retrieved January 1, 2009 from

http://csited.org/2007/7CheoCSITEd.pdf�
http://jite.org/documents/Vol5/v5p459-476Connolly170.pdf�
http://csited.org/2007/8LeitCSITEd.pdf�
http://www.aishe.org/readings/2005-2/contents.html�

www.manaraa.com

Bunch

271

http://www.heacademy.ac.uk/resources/detail/id349_A_Briefing_on_Assessment_in_Problem-
based_Learning

Merrill, M. D. (2002). First principles of instruction. Educational Technology Research and Development,
50(3), 43-59.

Norman, G. R. (1998). Assessment in problem-based learning. In D. Boud & G. Feletti (Eds.), The chal-
lenge of problem-based learning (2nd ed.). London: Kogan Page.

Paas, F. & van Gog, T. (2006). Optimising worked example instruction: Different ways to increase ger-
mane cognitive load. Learning and Instruction, 16, 87-91.

Reigeluth, C. M. (1999). The elaboration theory: Guidance for scope and sequence decisions. In C. M.
Reigeluth (Ed.), Instructional-design theories and models (Vol. II). New Jersey: Erlbaum.

Robins, A., Rountree, J., & Rountree, N. (2003). Learning and teaching programming: A review and dis-
cussion. Computer Science Education, 13(2), 137-172.

Schank, R. C., Berman, T. R., & MacPherson, K. A. (1999). Learning by doing. In C. M. Reigeluth (Ed.),
Instructional-design theories and models (Vol. II). New Jersey: Erlbaum.

Stitt-Gohdes, W. (2001). Business education students' preferred learning styles. Journal of Career and
Technical Education, 18(1), 32-45.

Trumper, R. (1996). Teaching about energy through a spiral curriculum: Guiding principles. Journal of
Curriculum and Supervision, 12, 66-75.

Tuovinen, J. E., & Sweller, J. (1999). A comparison of cognitive load associated with discovery learning
and worked examples. Journal of Educational Psychology, 91(2), 334-341.

Venebles, A., & Tan, G. (2007). A 'hands on' strategy for teaching genetic algorithms to undergraduates.
Journal of Information Technology Education, 6, 249-269. Retrieved from
http://jite.org/documents/Vol6/JITEv6p249-261Venables263.pdf

van Merrienboer, J. J. G., Kirshner, P. A., & Kester, L. (2003). Taking the load off a learner's mind: In-
structional design for complex learning. Educational Psychologist, 38(1), 5-13.

Whitehead, E. J. (2002). A proposed curriculum for a masters in Web engineering. Journal of Web Engi-
neering, 1(1), 18-22.

Yaman, M., Nerdel, C., & Bayrhuber, H. (2008). The effects of instructional support and learner interests
when learning using computer simulations. Computers & Education, 51, 1784-1794.

Biography
John M. Bunch is President and Principal of The SAJES Group, Inc.
He applies instructional science to solve business problems faced by
corporate and other organizational clients, in addition to developing and
delivering courseware in database and programming technologies. His
research interests include the use of problem-based instruction in post-
secondary career and technical education, and enhancing learner moti-
vation through instructional design. He spent several years as a hands-
on information systems professional and corporate trainer before re-
ceiving his Ph.D. in Instructional Technology from The University of
South Florida.

http://www.heacademy.ac.uk/resources/detail/id349_A_Briefing_on_Assessment_in_Problem-based_Learning�
http://www.heacademy.ac.uk/resources/detail/id349_A_Briefing_on_Assessment_in_Problem-based_Learning�
http://jite.org/documents/Vol6/JITEv6p249-261Venables263.pdf�

www.manaraa.com

Copyright of Journal of Information Technology Education is the property of Informing Science and its content

may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express

written permission. However, users may print, download, or email articles for individual use.

